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Passage through resonance and autoresonance inx2n-type potentials

E. Nakar and L. Friedland
Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel

~Received 7 June 1999!

Resonant dynamics of a particle in anx2n-type potential driven by an oscillation with adiabatically varying
frequency is investigated. It is shown that, under certain conditions, when the driving frequency increases in
time and passes the resonance with the unperturbed system, the oscillator phase locks to the drive and, later,
this phase locking is sustained, i.e., the system remains in autoresonance. The initial phase locking by passage
through resonance is the main ingredient of the transition to autoresonance and comprises the generalization of
previous results for nearly parabolic potentials.@S1063-651X~99!16911-3#

PACS number~s!: 05.45.Xt
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I. INTRODUCTION

Autoresonance~or self-sustained resonance! is a phenom-
enon taking place when a resonantly driven nonlinear sys
stays phase locked with adiabatically varying perturbing
cillation ~the drive! even if the drive’s frequency~or another
system parameter! varies in time. Autoresonance is used
relativistic particle accelerators@1# and other applications
such as, in atomic and molecular physics@2#, nonlinear dy-
namics @3#, nonlinear waves@4#, fluid dynamics@5#, and
plasma physics@6#. There exist two scenarios for excitin
autoresonance in the system. The first is applying a driv
perturbation with initial frequency and phasetunedclose to
those of the unperturbed nonlinear oscillator, which may
may not be excited initially@2#. In this case, at certain con
ditions, the oscillator remains in resonance~stays phase
locked! at later times, as the driving frequency varies in tim
Alternatively @7#, one can startout of resonanceand slowly
pass the resonant point by chirping the driving frequen
Then, there exists a sharp threshold on the drive’s amplit
@5# beyond which the oscillatorautomaticallyphase locks
with the drive and evolves in autoresonance at later time
the variation of the driving frequency continues. The seco
autoresonant excitation scheme is preferable in prac
implementations, since it does not require fine initial tunin
We shall refer to this scheme aslocking by passage throug
resonanceor LPTR. The theory of LPTR and the aforeme
tioned threshold prediction exist for the case, when one p
ceeds near the equilibrium position~sayx50) of the nonlin-
ear oscillator, and, locally, the confining potential has
nearly parabolic formV}x2 @5#. In contrast, in the presen
work, we shall develop the LPTR theory for oscillators ha
ing a nonparabolic form (V}x2n, n.1) near the equilib-
rium. This family of potentials comprises a model describi
transition to a square potential well asn→`. We shall also
generalize the LPTR theory to studying the phase lock
~with the drive! of initially excited oscillators, and discus
the advanced autoresonance stage in these systems.

Our presentation will be as follows. In Sec. II we sh
study the LPTR of a particle forV}x4 case in detail. The
subsequent autoresonant evolution in this case will be s
ied in Sec. III. Finally, in Sec. IV we shall generalize to th
n.2 case and present our conclusions.
PRE 601063-651X/99/60~5!/5479~7!/$15.00
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II. PHASE LOCKING BY PASSAGE THROUGH
RESONANCE

Consider a driven oscillator described by the Hamilton

H~p,x,t !5
1

2
p21

1

2n
x2n2«xcosw~ t !, ~1!

wheren may have values 2,3, . . . , while the last term is a
perturbation (e!1) characterized by frequencyv(t)
5dw/dt, which is a slowly increasing function of time. Fo
simplicity, we shall assume that this time dependence is
ear, i.e.,v(t)5v01at and that all dependent and indepe
dent variables (p,x,t) and parameters («, v) are dimension-
less. We shall also assume that the oscillator is exc
initially ~at t5t0) and study the possibility of phase lockin
via passage through resonance~LPTR! between the drive
and the oscillator and subsequent evolution of the system
later times,t.t0. A typical example illustrating LPTR and
the autoresonance in this system is presented in Fig. 1~a!,
where we show the phase space portrait of the solution

FIG. 1. Autoresonance in theV5
1
4 x4 potential well. ~a! The

spiralling phase-space portrait of autoresonant evolution;~b! The
coordinate versus time~curve 1! and the function cosw(t)23.5
~curve 2! representing the driving oscillation. Comparison betwe
the curves illustrates the persisting phase locking in the sys
despite variation of the driving frequency.
5479 © 1999 The American Physical Society
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5480 PRE 60E. NAKAR AND L. FRIEDLAND
Hamilton’s equationsdp/dt52x2n211 «cosw, dx/dt5p
in the casen52. We used parameterse50.11, a50.005,
v050, ~i.e., w5 1

2 at2) and initial conditions x50, p
50.372~at t510) in these calculations. Additional informa
tion from the calculations is presented in Fig. 1~b!, where we
see a part of the evolution ofx ~curve 1! in the time interval
200,t,400, as well as the function$cos@w(t)#23.5% ~curve
2 in the figure! representing the shifted~by 23.5) driving
perturbation. The phase space portrait in Fig. 1~a! exhibits a
spiralling evolution with a slowly increasing averaged e
ergy, while the comparison between the curves in Fig. 1~b!
illustrates the phase locking between the solution and
drive despite the variation of the driving frequency. We c
also see that the amplitude of these oscillations grows on
average, but also performs slow oscillations around the
erage. The interference-type pattern in Fig. 1~a! is due to
these amplitude oscillations. Our goal is to discuss all sta
of evolution in Figs. 1~a! and 1~b! and find the conditions for
trapping into resonance and subsequent autoresonance
system.

The most convenient description of the resonant dynam
in our system is obtained by transforming to action an
variablesI and u associated with the unperturbed proble
described by HamiltonianH05 1

2 p211/2nx2n. In this case,
H05bnI 2n/(n11), where@8#

bn5~2n!21/(n11)FAp/2~11n!
G~1/211/2n!

G~1/2n! G2n/(n11)

.

Then, by expandingx5(2ak(I )cos(ku), we replace the
original Hamiltonian by

H85H0~ I !2e( ak
(n)@cos~ku2w!1cos~ku1w!#. ~2!

On using mechanical similarity forx2n-type potentials@9#,
the coefficientsak

(n) in ~2! scale with action as

ak
(n)5gk

(n)I 1/(n11), ~3!

having the same exponent for allk, while the constantsgk
(n)

fall off rapidly with k. Therefore, for our purposes, we sha
truncate the series in~2!, i.e., approximate

H'H0~ I !2ea1
(n)@cos~u2w!1cos~u1w!#. ~4!

This yields the following evolution equations

dI/dt52ea1
(n)@sinF1sin~F12w!#, ~5!

dF/dt5V0~ I !2v~ t !1O~e!,

where F[u2w is the phase mismatch, andV0[dH0 /dI
5@2n/(n11)#bnI (n21)/(n11) is the frequency of the unper
turbed oscillator. The second equation in~5! shows that if
one starts out of resonance, i.e., when the differenceV0(I )
2v(t0) is positive and larger than theO(e) term in this
equation andv(t) slowly increases in time, then the pha
mismatchF increasesmonotonically in time untilV0(I )
2v(t) becomes ofO(e). We shall see below that, at certa
conditions, beyond this timeV0(I )2v(t) remains ofO(e),
meaning that the system remains phase locked@dF/dt
-

e
n
he
v-

es

the

s
e

5O(e)#. When this is the case, one can make an additio
approximation and leave only the slowest term in the per
bation in ~4!, i.e., consider the dynamics described by t
approximate,single resonanceHamiltonian@10#

H9~ I ,u,t !5H0~ I !2ea1~ I !cosF. ~6!

The evolution equations given by this Hamiltonian are

dI

dt
52ea1sinF,

~7!
dF

dt
5V02v2e~da1 /dI !cosF.

Equations~7! differ from those describing the usual nonlin
ear resonance@10# by the slow time variation of the driving
frequencyv(t). At this stage, we can also include the nea
parabolic potential case within the same system~7!, where,
for small I, V0(I )'b112c1I ~with constantc1), while a1
'g1I 1/2, i.e., has the form~3! with n51. Thus, all cases
(n51,2, . . . ) ofLPTR can be treated within the same sy
tem

dI/dt52egnI r nsinF,
~8!

dF/dt5~qn11!cnI qn2at2er ngnI 2nrncosF,

where, for n51, we have shifted the time to remove th
constant term in the right-hand side~RHS! in the second
equation in~7!; r n51/(n11), qn5(n21)r n , cn[bn for n
.1, andqn51 for n51. Note that~8! comprises a Hamil-
tonian system for the canonical pair (I ,F) with the effective
Hamiltonian of form

He f f5cnI qn112atI 2egnI r ncosF. ~9!

Now, for definiteness, we focus on then52 case, i.e.,
V5 1

4 x4, for which ~8! becomes

dI/dt52eg2I 1/3sinF,
~10!

dF/dt5~4/3!c2I 1/32at2~eg2/3!I 22/3cosF.

First, we present numerical solutions in our system in ter
of the action-angle variables in the same example as in F
1~a! and 1~b!. These results are shown in Fig. 2~a!, where we
again used parameterse50.11, a50.005. The initial condi-
tions were I 50.15,u53p/2 ~at t0510), while c250.867
andg250.652 in then52 case. The calculations were pe
formed in two stages. In the first stage, fort0,t,ts575, we
used evolution equations based on the two-term approxi
tion of the driving term@~5!#, while, for t.ts , switched to
the single resonance representation@i.e., to Eqs.~7!#. One
can see in the figure that the phase locking in the sys
starts att'85 and continues at later times as the actioI
increases automatically to satisfy the approximate resona
condition (4/3)c2I 1/32at'0. The latter statement is illus
trated by adding the thick line in Fig. 2~a!, which shows the
function (3at/4c2)3 representing the exact resonance. T
degree of accuracy of our approximations is illustrated
Fig. 2~b!. The figure compares the time dependence of
energyH8 ~the thin line! found by using~4! where one sub-
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PRE 60 5481PASSAGE THROUGH RESONANCE AND AUTORESONANCE . . .
stitutes the data shown in Fig. 1~a! and compares it withH
@see~1!# calculated by using the numerical solution of t
original evolution equations. We can see in this figure t
for t0,t,75 the agreement is excellent, while fort.75,
when we switch to the single resonance approximation, c
tinues to be very good.

At this stage we proceed to the question of how the ph
locking starts in our system. One can answer this questio
viewing v(t)5at in the HamiltonianHe f f @see ~9!# as a
slowly varyingparameter. If this parameter would be fixe
the energyHe f f would be conserved. The phase space p
trait of the system in this case can be analyzed by rewri
~9! ~for n52 case! as

G~ I ![cosF5~«g2!21S c2I 2vI 2/32
He f f

I 1/3 D . ~11!

By studying the RHS of the last equation one finds that
sufficiently smallv the phase space portrait of the syste
changes its character depending on whetherHe f f is positive
or negative. This is illustrated in two examples in Figs. 3~a!
and 3~b!. Figure 3~a! showsG5G(I ) for v50.4, «50.11
and three valuesHe f f52231023,0,231023 ~curves 1,2
and 3, respectively!. We can see from the figure that fo
He f f5231023 the phase mismatchF grows monotonically
@21<cosF<11#, while the action oscillates in the interva
I 1<I<I 2 ~between the corresponding full circle dots in t
figure!. In contrast, forHe f f52231023 the phase mis-
match is bounded and cosF oscillates between11 and
cos(DF), i.e., F(mod 2p) oscillates between6DF, while
the oscillations of the action remain in nearly the same lim
I 3<I<I 4. Figure 3~b! presents the same case as Fig. 3~a!,
but for a larger value ofv50.8. One can see that in contra
to Fig. 3~a!, the minimum ofG(I ) at He f f50 now lies below
21. Consequently, when one slowly passes from small p
tive to small negative values ofHe f f , the system remains

FIG. 2. Autoresonance in two- and~beyond ts575) single-
resonance approximations.~a! The evolution of the actionI and
phase mismatchF. The thick line represents the exact resonan
condition; ~b! the energy in the system versus time.H is the solu-
tion of the exact evolution equations;H8 ~the thin line! is calculated
by using the results shown in~a! substituted in the approximatio
~5!.
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detrapped, while the action oscillates in almost the same
terval I 1'I 3<I<I 4'I 2. We shall see below that, at late
times in this case, the minimum value ofG increases until it
passes the value of21, while, later, for some initial values
of F, G decreases again, after the quasi-particle passes t
second detrapped region@denoted by two square dots in Fig
3~b!#.

Now we return to our real system, where the parame
v(t)5at is a slowly varying function of time. In this cas
He f f also is a slow function of time. Since

dHe f f /dt52aI , ~12!

He f f decreasesmonotonically. As a result, if one starts at
positive value ofHe f f and the rate of change ofHe f f is
sufficiently slow~i.e., for sufficiently smalla), on the basis
of the discussion above, we expect phase trapping to occ
the time whenHe f f passes zero, provided that the minimu
of G(I ) at this time is above21. Note that this argument is
independent of the initial value of the phase mismatch a
therefore, the initial positiveness ofHe f f and the first occur-
rence of the minimum inG(I ) above21 are the necessar
conditions for phase trapping in the system. We demonst
these conclusions in Fig. 4~a! showing the evolution of the
phase mismatchF and of He f f in the example presente
earlier in Fig. 1. As expected, phase trapping occurs at
moment whenHe f f passes zero. In contrast, In Fig. 4~b!, we
start with a larger initial value of the action,I 50.46 ~larger
initial energy! and switch to the single resonance approxim
tion @Eqs.~11!# at later time,ts5120. Here, the minimum of
G is less than21 when it appears first during the evolutio
and, consequently, there is no phase trapping in this c
Finally, we estimate the phase trapping time. The latter

e

FIG. 3. The auxiliary functionG5cosF versus actionI for
fixed v and He f f just above zero~curves 1!, He f f50 ~curves 2!,
and He f f just below zero~curves 3!. ~a! The phase trapping sce
nario: the minimum ofG is above the value of21 when it occurs
first. The full circle dots show the bounds of variation of the acti
just before and after the phase locking;~b! the minimum ofG is
below 21 whenHe f f passes zero. There exists some initial pha
mismatch, such that there is no phase trapping in this case. The
state of the system after passage through resonance is within
bounds shown by square dots.
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5482 PRE 60E. NAKAR AND L. FRIEDLAND
pends on initial conditions and can be found by using
adiabatic invariantin the problem, i.e.,

J~He f f ,v![~2p!21E
0

2p

I * dF'const, ~13!

where I * 5I * (He f f ,v,F) is the solution of~11! for I. We
illustrate the invariance ofJ in Fig. 5, showing the (I ,F)
portrait of evolution in the system passing from the d
trapped to trapped autoresonant state. We used the sam
tial conditions and parameters as in Figs. 1 and 2, bua
50.001 andts5275. The invariance ofJ is seen in the figure
as the preservation of the areasA1,2,3 inside the parts of the
portrait shown by thick lines and corresponding to sin

FIG. 4. The energyHe f f and phase mismatchF versus time in
passage through resonance.~a! Sufficiently small and positive ini-
tial He f f . The minimum ofG occurs first above21. The phase
trapping proceeds asHe f f passes zero.~b! Larger initial energy. The
minimum ofG occurs first below21 and there is no phase trappin
in this case.

FIG. 5. Action versus phase mismatch during phase trapping
passage through resonance. The conservation of the areasAi in the
figure illustrates the adiabatic invariance ofJ5(2p)21rI * dF dur-
ing the evolution from the detrapped~areasA1,2) to trapped~area
A3) state of the system. The arrows show the direction of the t
evolution of the system.
e

-
ini-

oscillation periods at different times before~areasA1,2) and
after ~areasA3) the trapping. Now, if att5t0 , J5J0, and
since v5at, the expected trapping timet r is given by Jr
[J(0,at r)5J0. In addition toJr(s) (s being defined ass
[at r), additional two universal functions evaluated a
He f f50 are important in studying the evolution of the sy
tem beyond the trapping point~see below!. The first is the
value of I * averaged over an oscillation, i.e.,

I r* ~s![T21E
0

T

I * dt, ~14!

where one averages over the period of oscillationT(s)
5(]J/]He f f)

21 of the system for fixed values ofHe f f50
and v5s. The second function, denoted byI mr* (s), is the
value ofI * at which the functionG @see~11!# at He f f50 and
v5s has a minimum~recall that for trapping this minimum
must lie above21). As defined, the three functions,Jr(s),
I r* (s), and I mr* (s), depend on two parameters,« and a.

Nonetheless, the renormalized functionsJ̄r5(eg2)21Jr ,
Ī r* 5(eg2)21I r* , and Ī mr* 5(eg2)21I mr* depend on asingle

parameterā5(eg2)21/3a, via the renormalized variables̄
5āt r . We have calculatedJ̄r( s̄), Ī r* ( s̄), andĪ mr* ( s̄) numeri-
cally and show these functions in Fig. 6. As described e
lier, J̄r( s̄) allows to find the trapping timet r . On the other
hand, we observe in the figure thatĪ r* ( s̄). Ī mr* ( s̄). This
leads to the conclusion that, after the trapping, the minim
value ofG (5cosF) increases towards11, i.e., the ampli-
tude DF5cos21(minG) of the trapped oscillations of the
phase mismatch aroundF50 (mod 2p) decreases. To
prove this statement, we denote minG5G(Imr* )[G* and, by
direct differentiation in the vicinity of the trapping poin
obtain dG* /dt5(]G* /]He f f)(dHe f f /dt)1]G* /]t, or, on
using ~12!,

dG* /dt5~a/«g2!~ I mr* !21/3~ I 2I mr* !. ~15!

ia

e

FIG. 6. Auxiliary functionsJr , I r* ~circles! and I mr* versuss̄

5āt r . The functionJr allows to find the phase locking timet r

from initial conditions, while, sinceI r* .I mr* , the amplitude of the
phase mismatch oscillations decreases fort.t r .
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PRE 60 5483PASSAGE THROUGH RESONANCE AND AUTORESONANCE . . .
This equation shows thatG* increases monotonically ifI
2I mr* is positive, as in the detrapped region between the
circle dots in Fig. 3~b!. Similarly, G* decreases monoton
cally when the particle is in the second detrapped reg
@between two square in Fig. 3~b!#. The transition between
these two types of evolution corresponds to the case w
for some initialF, the particle passes from one detrapp
region to another and, thus, remains detrapped after pas
through resonance. In contrast, if the particle is trapped~ei-
ther initially, or whenG* appears first above21), I oscil-
lates aroundI mr* and so doesG* , according to~15!. At the
same time, we find that, in averaging over a single osci
tion,

d^G* &/dt'~a/«g2!~ I mr* !21/3~ I r* 2I mr* !.0, ~16!

i.e., indeed, the amplitudeDF of the system phase mismatc
oscillations decreases after the trapping. Similarly, o
shows that

d^I mr* &/dt'~a/3G9!~ I mr* !24/3~ I r* 12I mr* !, ~17!

whereG9.0 is the second derivative ofG at the minimum.
Thus, the minimal action value increases after the trapp
When ^I mr* & grows and the amplitudeDF of the mismatch
oscillations becomes sufficiently small~say DF,p/6 for
definiteness!, the systems enters the advanced autoreso
evolution stage, which we consider in the following sectio

III. ADVANCED AUTORESONANT EVOLUTION

At this point we assume that during the phase lock
process described above, one reaches a stage, w
F(mod 2p),p/6, i.e., one can replace cosF'1 in the sec-
ond equation in~10!, yielding a simplified system:

dI/dt52«g2I 1/3sinF, ~18!

dF/dt5~4/3!c2I 1/32at2~«g2/3!I 22/3.

Then, we seek solutions of~18! in the form I 5 Ĩ 1dI and
F5F̃1dF, where Ĩ andF̃ are defined by

~4/3!c2 Ĩ 1/32at2~«g2/3! Ĩ 22/350,
~19!

2
a

R
2«g2 Ĩ 1/3sinF̃50,

where

R[a~d Ĩ /dt!215~4/9!c2 Ĩ 22/31~2/9!«g2 Ĩ 25/3. ~20!

Note thatF̃ can be defined this way only if«g2 Ĩ 1/3.a/R.
Furthermore, bothĨ and R are varying monotonically with
t ( Ĩ grows, whileR decreases!. Now, by assuming thatudI u
! Ĩ and udFu! p, we linearize in~18!, yielding

d~dI !/dt52«g2 Ĩ 1/3dF, ~21!

d~dF!/dt5RdI
ll

n

n,
d
ing

-

e

g.

nt
.

g
ere

Equations~21! comprise a Hamiltonian system with th
Hamiltonian

dH5
1

2
R~dI !21

1

2
«g2 Ĩ 1/3~dF!2, ~22!

which describes linear oscillations ofdF and dI with a
slowly varying frequencyn5(«g2 Ĩ 1/3R)1/2. We observe that
if dFmax anddI max are the amplitudes of these oscillation
then the product (dF)max (dI)max is an adiabatic invariant a
long asn22udn/dtu!1. Therefore, since from~21!, ndI max

5«g2Ĩ
1/3dFmax, we have (dI max)

2}R21/2Ĩ 1/6, so dI max/Ĩ
}R21/4Ĩ 211/12. Similarly, dFmax}R1/4Ĩ 21/12. These results
show that bothdI max/Ĩ anddFmax decreasewith time under
adiabatic conditions and, therefore, the adiabaticity condit
n22udn/dtu!1 is sufficient for sustaining the autoresonan
beyond the trapping stage. Let us discuss this condition
more detail. After some algebra, we find

n22udn/dtu,C@ Ĩ 21/612~«g2 /c2! Ĩ 27/6#, ~23!

where C5(9/16)@a/(«g2)2#(«g2 /c2)3/2. Since the right
hand side in~23! decreases in time, sufficiently small valu
of a guarantees satisfaction of the adiabaticity condition
all times. Finally, in order to have a slowly varying quas
steady state defined in~19! one must have«g2 Ĩ 1/3.a/R or

a~«g2RĨ1/3!21,1. ~24!

This condition brakes fort large enough sinceRĨ1/3 de-
creases with time. One can get a good estimate for the b
ing time tb by assumingĨ b5 Ĩ (tb)@1. In this caseRĨ1/3

'(16/27)c2
2(at)21 and, therefore,

tb'~16/27!~«g2!~c2 /a!2. ~25!

We see thattb and, consequently, the maximum amplitude
autoresonantly excited oscillator can be controlled by va
ing the rate of variationa of the driving frequency. Note also
that sinceĨ b'(4«g2c2/9a)3, our assumptionĨ @1 is valid
for a small enough.

We illustrate our predictions in Fig. 7 showing the a
toresonant evolution~solid lines! of (F1p)(mod 2p)2p
~Fig. 7a! and I ~Fig. 7b! for the same parameters and initi
conditions as in Fig. 2, but for longer times when the brak
of the autoresonance is achieved. The dashed lines in
figures representF̃ and Ĩ respectively. One can see that,
expected, the amplitude of the autoresonant phase osc
tions decreases in time and that the autoresonance disco
ues at t'1300, in an excellent agreement withtb51278
from ~25! for this case.

IV. CONCLUSIONS

We have studied the problem of trapping into resona
and subsequent autoresonant evolution of a nonlinear o
lator characterized byx4-type potential and driven by a
chirped frequency perturbation. We have shown that, un
certain conditions, when the driving frequency increases
passes that of the unperturbed oscillator, the oscillator ph



nc

he

ud

ed
g
ti

t
or
e

lu

in
fo
-

of a

not
ion
tial
t lead
cle
ite
s-
ance
ition

to

asi-
ance

mes

ur
so-
ms
e
sys-

in
lin-

m

da-
u-

ge

wi

5484 PRE 60E. NAKAR AND L. FRIEDLAND
locks to the drive, and, at later times, the oscillator freque
follows ~in average! that of the driving oscillation. This
means that a continuing excitation of the system to hig
energies takes place, until times scaling astb;a22 @see
~24!# for linearly chirped driving frequency (a being the
frequency chirp rate!. This time limit can be removed if one
gradually reduces the chirp rate as the oscillation amplit
increases in autoresonance. Generalization tox2n (n.2)
case can be performed along the same lines as describ
Secs. II and III. For example, in studying the trapping sta
in the general case, one deals with the characteristic func
@compare to~11! for the n52 case#

Gn~ I !5~«gn!21S cnI
2n21
n11 2vI

n
n112

He f f

I
1

n11
D , ~26!

which for different values ofHe f f has the form similar to tha
shown in Fig. 3 in then52 case. We again conclude that f
all n,1`, the trapping takes place when the slowly d
creasingHe f f ~in the general case we also havedHe f f /dt
52aI ) becomes negative, provided that the minimal va
of Gn(I ) is above21 when it occurs first in the evolution
process. This guarantees phase trapping in the system
pendently of the initial phase of the oscillator. In contrast,
n5` ~the square potential well! the last term in the paren
theses in the RHS of~26! is simply He f f and there exist no
singularity of typeGn(I )→2` at I→0 at positive values of

FIG. 7. Evolution of the phase mismatch (F1p)(mod 2p)
2p @~a!# and the actionI @~b!# in the advanced autoresonance sta

The curvesF̃ and Ĩ represent the quasi-steady-state associated
the autoresonance. The phase locking discontinues att'tb @see Eq.
~25!# as the quasi-steady state ceases to exist.
y

r

e

in
e
on

-

e

de-
r

He f f as in Fig. 3, which is necessary for the appearance
minimum ofGn(I ) abovethe value of21 at later times after
starting in the detrapped state, where this minimum does
exist. Since this is the only scenario for adiabatic transit
to the trapped state in our system independently of ini
phase, the adiabatic passage through resonance does no
to automatic phase locking of an adiabatically driven parti
in a square potential well. Returning to arbitrary, but fin
values ofn, as in then52 case, after the trapping, the sy
tem enters the autoresonant evolution stage. Autoreson
continues as long as one satisfies the adiabaticity cond
@compare to~ 23! for the n52 case#

1

n2 Udn

dtU,CnF 1

Ĩ (n23/2)r n
1

n«gn /~n21!

cnĨ (3n25/2)r n
G , ~27!

where Cn5(a/2)(n11)2@2n(n21)cn#23/2(«gn)21/2. In
addition to~27! one must also satisfy the condition similar
~24!

a/~«gnRnĨ r n!,1, ~28!

where Rn5@2n(n21)/(n11)2#cnĨ qn211nrn
2«g2 Ĩ 2nrn21.

This condition guarantees the existence of a slow qu
steady state in the system during the advanced autoreson
stage. As in then52 case,~28! is not satisfied for all times,
but is broken at@compare to~25!#

tb5F2n~n21!cn«gn

a~n11!2 G nF n11

«gn~n21!G . ~29!

Equation~29! shows that, in the limit of largen, for a fixed
and small enough, the autoresonance lasts for longer ti
for larger values ofn.

In addition to these applications, we plan to extend o
theory to the problem of sub- and higher harmonic autore
nance, as well as to higher dimensional dynamical syste
of a similar type. Another interesting direction for futur
studies is the autoresonance in driven nonlinear wave
tems which can be associated with the dynamical problem
x2n-type potentials. One such example is the driven non
ear Schrodinger equation with higher order nonlinearity@11#
ic t1cxx1ucu2nc5 f . The time independent limit of this
equation for realc corresponds to the dynamical proble
considered in this work.
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