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Passage through resonance and autoresonancejA”-type potentials
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Resonant dynamics of a particle in aff-type potential driven by an oscillation with adiabatically varying
frequency is investigated. It is shown that, under certain conditions, when the driving frequency increases in
time and passes the resonance with the unperturbed system, the oscillator phase locks to the drive and, later,
this phase locking is sustained, i.e., the system remains in autoresonance. The initial phase locking by passage
through resonance is the main ingredient of the transition to autoresonance and comprises the generalization of
previous results for nearly parabolic potentid81063-651X%99)16911-3

PACS numbeg(s): 05.45.Xt

I. INTRODUCTION Il. PHASE LOCKING BY PASSAGE THROUGH
RESONANCE
Autoresonanceor self-sustained resonands a phenom-

enon taking place when a resonantly driven nonlinear system
stays phase locked with adiabatically varying perturbing os- 1 1
cillation (the drive even if the drive’s frequencgor another H(p,x,t)= §p2+ %xzn—excosw(t), (1)
system parametgwvaries in time. Autoresonance is used in
relativistic particle acceleratorisl] and other applications,
such as, in atomic and molecular physj3, nonlinear dy-

namics[3], nonlinear waveq4], fluid dynamics[S], and  _ 4 4t which is a slowly increasing function of time. For
plasma physic$6]. There exist two scenarios for exciting gjmpjicity, we shall assume that this time dependence is lin-
autoresonance in the system. The first is applying a dnvmgéar, i.e.,0(t) = wo+ at and that all dependent and indepen-
perturbation with initial frequency and phaseéedclose to  yent variablesi,x,t) and parameterss( ) are dimension-
those of the unperturbed nonlinear oscillator, which may ofess, we shall also assume that the oscillator is excited
may not be excited initiall§2]. In this case, at certain con- initially (att=t,) and study the possibility of phase locking
ditions, the oscillator remains in resonan¢gays phase via passage through resonan@ePTR) between the drive
locked at later times, as the driving frequency varies in time.and the oscillator and subsequent evolution of the system at
Alternatively [7], one can starbut of resonanc@nd slowly  later times,t>t,. A typical example illustrating LPTR and
pass the resonant point by chirping the driving frequencythe autoresonance in this system is presented in R, 1
Then, there exists a sharp threshold on the drive’'s amplitudeshere we show the phase space portrait of the solution of
[5] beyond which the oscillatoautomatically phase locks

Consider a driven oscillator described by the Hamiltonian

wheren may have values 2,3. ., while the last term is a
perturbation €<1) characterized by frequencyw(t)

with the drive and evolves in autoresonance at later times if 10 @ 3 )
the variation of the driving frequency continues. The second 81 = Al
autoresonant excitation scheme is preferable in practical 6l 1
implementations, since it does not require fine initial tuning. = ;j 1
We shall refer to this scheme &cking by passage through % 47 >
resonanceor LPTR. The theory of LPTR and the aforemen- 5 2 4 0
. L ) & 0
tioned threshold prediction exist for the case, when one pro- < ol . y
S " . 0

ceeds near the equilibrium positi¢sayx=0) of the nonlin- % o)
ear oscillator, and, locally, the confining potential has a 20 g U 2r 5
nearly parabolic formVox? [5]. In contrast, in the present 41
work, we shall develop the LPTR theory for oscillators hav- ol -3 1 (
ing a nonparabolic form\(<x?",n>1) near the equilib- . |
rium. This family of potentials comprises a model describing & i

iti i -10 ‘ ‘ . B} ‘ ,
transmo_n to a square potential well RS-, We shall also. N e R = 5200 550 300 350 400
generalize the LPTR theory to studying the phase locking COORDINATE, x TIME, t

(with the drive of initially excited oscillators, and discuss
the advanced autoresonance stage in these systems. FIG. 1. Autoresonance in the=3x* potential well. (@) The

Our presentation will be as follows. In Sec. Il we shall gpjralling phase-space portrait of autoresonant evolutibn.The
study the LPTR of a particle fovecx* case in detail. The coordinate versus timécurve 3 and the function cos(t)—3.5
subsequent autoresonant evolution in this case will be studcurve 2 representing the driving oscillation. Comparison between
ied in Sec. lll. Finally, in Sec. IV we shall generalize to the the curves illustrates the persisting phase locking in the system
n>2 case and present our conclusions. despite variation of the driving frequency.
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Hamilton’s equationsip/dt=—x>""1+ gcose, dx/dt=p =0(e)]. When this is the case, one can make an additional
in the casen=2. We used parametees=0.11, «=0.005, approximation and leave only the slowest term in the pertur-
wo=0, (i.e., p=1%at?) and initial conditionsx=0, p bation in (4), i.e., consider the dynamics described by the
=0.372(att=10) in these calculations. Additional informa- approximatesingle resonancéiamiltonian[10]

tion from the calculations is presented in Figb)l where we "

see a part of the evolution (xfp(curve Din thgtime interval H"(1,6,1)=Ho(1) — eay(I) cos®. ®)
200<t<400, as well as the functioftog ¢(t)]—3.5 (curve

: ) . ; . The evolution equations given by this Hamiltonian are
2 in the figure representing the shiftetby —3.5) driving

perturbation. The phase space portrait in Fi@) £xhibits a dl _

spiralling evolution with a slowly increasing averaged en- a:_ealsmq)v

ergy, while the comparison between the curves in Fig) 1 )
illustrates the phase locking between the solution and the dd

drive despite the variation of the driving frequency. We can W:QO_(‘)_ e(da, /dl)cosd.

also see that the amplitude of these oscillations grows on the

average, but also performs slow oscillations around the avequations(7) differ from those describing the usual nonlin-
erage. The interference-type pattern in Figa)lis due 10 g4y resonanckL0] by the slow time variation of the driving
these amplitude oscillations. Our goal is to discuss all stagefequencyw(t). At this stage, we can also include the nearly
of evolution in Figs. 1a) and Xb) and find the conditions for parabolic potential case within the same syst@n where,
trapping into resonance and subsequent autoresonance in e sma| |, Qo(1)~b;+2¢,1 (with constantc,), while a;

system. , . . ~v1Y2 ie., has the form{3) with n=1. Thus, all cases
. The most convenient description of thg resonant dynam|c§n: 1,2,...) ofLPTR can be treated within the same sys-
in our system is obtained by transforming to action ang|
variablesl and # associated with the unperturbed problem
described by Hamiltoniatd o= 3 p?+ 1/2nx?". In this case, dl/dt=— ey,l"nsin®,
Ho=b,12"("* 1 where[8] ®)
= On— Ht — -nr
. I (1/2+ 1/2n) |20 D) dd/dt=(q,+1)cyl—at—er,y,l ""ncosd,
- —U(n+1)| | . .
by=(2n) ") Jm/2(1+n) T(1/2n) : where, forn=1, we have shifted the time to remove the
constant term in the right-hand sid®HS) in the second
Then, by expandingx==2a,(l)coskd), we replace the equation in(7); r,=1/(n+1), q,=(n—1)r,, c,=b, for n
original Hamiltonian by >1, andq,=1 for n=1. Note that(8) comprises a Hamil-
tonian system for the canonical pal, @) with the effective
H =Ho(1)— €S, af[cogko—p)+cogko+e)]. (2) Hamiltonian of form
Hetr=Cpl " 1= atl — ey, | "ncosd. 9
On using mechanical similarity fox®"-type potentialg9], o .
the coefficientsa{™ in (2) scale with action as Now, for definiteness, we focus on tme=2 case, i.e.,
V= 1x4, for which (8) becomes

(n)_ . (n)1/(n+1)

ay = I , 3 .

kT Tk ® dl/dt= — ey, sin®,

having the same exponent for &llwhile the constantsg{™ s e (10)
fall off rapidly with k. Therefore, for our purposes, we shall d®/dt=(4/3)cal "~ at—(ey,/3)| " ““cos®.

truncate the series if2), i.e., approximate . . . . .
First, we present numerical solutions in our system in terms

H~Ho(l)— ea(ln)[cos( 0— @) +cog 0+ ¢)]. (4) of the action-angle variables in the same e_:xample as in Figs.
1(a) and 1b). These results are shown in Figag where we
This yields the following evolution equations again used paramete¢s=0.11, «=0.005. The initial condi-
tions werel =0.150=37/2 (at to=10), while c,=0.867
dl/dt= —ea(ln)[sin¢+sir1(<b+2<p)], (5) and y,=0.652 in then=2 case. The calculations were per-
formed in two stages. In the first stage, fgrt<t;=75, we
dd/dt=Q4(l)— w(t)+0(e), used evolution equations based on the two-term approxima-

tion of the driving term[(5)], while, for t>t, switched to
where = 6— ¢ is the phase mismatch, afdl,=dHy/dl  the single resonance representatjar., to Egs.(7)]. One
=[2n/(n+1)]b, I (" V/(*1) js the frequency of the unper- can see in the figure that the phase locking in the system
turbed oscillator. The second equation(B) shows that if starts att~85 and continues at later times as the action
one starts out of resonance, i.e., when the differeng@) increases automatically to satisfy the approximate resonance
—w(tp) is positive and larger than th®(e) term in this  condition (4/3F,1Y3—at~0. The latter statement is illus-
equation ands(t) slowly increases in time, then the phasetrated by adding the thick line in Fig(&®, which shows the
mismatch® increasesmonotonically in time untilQq(l)  function (3at/4c,)® representing the exact resonance. The
— w(t) becomes 0D(€). We shall see below that, at certain degree of accuracy of our approximations is illustrated in
conditions, beyond this tim@ (1) — w(t) remains ofO(e), Fig. 2(b). The figure compares the time dependence of the
meaning that the system remains phase lockdd®/dt  energyH’ (the thin line found by using(4) where one sub-
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FIG. 3. The auxiliary functionG=cos® versus actionl for
fixed w and Hg¢; just above zerdcurves ), Hqs;=0 (curves 2,
eand Hegs just below zero(curves 3. (&) The phase trapping sce-
nario: the minimum ofG is above the value of-1 when it occurs
first. The full circle dots show the bounds of variation of the action
just before and after the phase lockirig) the minimum ofG is
below —1 whenH.¢; passes zero. There exists some initial phase
mismatch, such that there is no phase trapping in this case. The final
state of the system after passage through resonance is within the
bounds shown by square dots.

FIG. 2. Autoresonance in two- angheyondts=75) single-
resonance approximation&) The evolution of the action and
phase mismatckb. The thick line represents the exact resonanc
condition; (b) the energy in the system versus tinkkis the solu-
tion of the exact evolution equatiortd; (the thin ling is calculated
by using the results shown i@ substituted in the approximation

5.

stitutes the data shown in Fig(dl and compares it withd

[see(1)] calculated by using the numerical solution of the
original evolution equations. We can see in this figure that ) ) ) ) )
for t,<t<75 the agreement is excellent, while for 75, detrapped, while the action oscillates in almost the same in-

when we switch to the single resonance approximation, conterval l1=ls<I=<I,~l,. We shall see below that, at later
tinues to be very good. times in this case, the minimum value Gfincreases until it

At this stage we proceed to the question of how the phasBasses the value of 1, while, later, for some initial values
locking starts in our system. One can answer this question b§f ¢, G decreases again, after the quasi-particle passes to the
viewing w(t)=at in the HamiltonianH.; [see (9)] as a  Second detrapped regigdenoted by two square dots in Fig.

slowly varyingparameter. If this parameter would be fixed, 3(b)].
the energyH,;; would be conserved. The phase space por- NOW we return to our real system, where the parameter

trait of the system in this case can be analyzed by rewritingﬁ(t): at is a slowly varying function of time. In this case
(9) (for n=2 case as eff also is a slow function of time. Since

eff dHeff/dt:_al, (12)

G(l )ECOS(DZ(S')/Z)l( Col — wl 23— %) . 1y
H.¢; decreasesnonotonically. As a result, if one starts at a

By studying the RHS of the last equation one finds that forpositive value ofH.¢; and the rate of change dfl ¢ is
sufficiently smallw the phase space portrait of the systemsufficiently slow(i.e., for sufficiently smallky), on the basis
changes its character depending on whettgy; is positive  of the discussion above, we expect phase trapping to occur at
or negative. This is illustrated in two examples in Fig&)3 the time wherH ¢; passes zero, provided that the minimum
and 3b). Figure 3a) showsG=G(l) for ®=0.4, e=0.11  of G(I) at this time is above- 1. Note that this argument is
and three valueH ;=—2x102,0,2x102 (curves 1,2 independent of the initial value of the phase mismatch and,
and 3, respectively We can see from the figure that for therefore, the initial positiveness bf,¢; and the first occur-
Hesr=2% 103 the phase mismatct grows monotonically  rence of the minimum ifG(l) above—1 are the necessary
[ — 1=<cos®=+1], while the action oscillates in the interval conditions for phase trapping in the system. We demonstrate
[,=<I=<I, (between the corresponding full circle dots in the these conclusions in Fig.(@ showing the evolution of the
figure). In contrast, forHqr=—2x10"2 the phase mis- phase mismatchb and of Hgss In the example presented
match is bounded and cds oscillates betweernt+1 and earlier in Fig. 1. As expected, phase trapping occurs at the
cosA®d), i.e., P(mod 27r) oscillates between- A®, while  moment wherH;; passes zero. In contrast, In Figh$i we
the oscillations of the action remain in nearly the same limitsstart with a larger initial value of the actioh=0.46 (larger
Is=<I=<I,. Figure 3b) presents the same case as Fi@),3 initial energy and switch to the single resonance approxima-
but for a larger value of»=0.8. One can see that in contrast tion [Eqgs.(11)] at later timet,=120. Here, the minimum of
to Fig. 3@&), the minimum ofG(l) atHg¢;=0 now lies below G is less than—1 when it appears first during the evolution
—1. Consequently, when one slowly passes from small posiand, consequently, there is no phase trapping in this case.
tive to small negative values dflo¢¢, the system remains Finally, we estimate the phase trapping time. The latter de-
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FIG. 4. The energH.¢; and phase mismatch versus time in FIG 6. Auxiliary functionsJ, , I* (circles and 1%, Versuss

passage through resonan¢a. Sufficiently small and positive ini-
tial Hgss. The minimum ofG occurs first above-1. The phase
trapping proceeds d3.¢; passes zerdb) Larger initial energy. The
minimum of G occurs first below- 1 and there is no phase trapping
in this case.

. The functionJ, allows to find the phase locking timig
from |n|t|al conditions, while, sincé} >15 , the amplitude of the
phase mismatch oscillations decreasest fet, .

oscillation periods at different times befofareasA; ,) and

pends on initial conditions and can be found by using theafter (areasA) the trapping. Now, if at=t,, J=Jo, and
adiabatic invariantin the problem, i.e., since w= at, the expected trapping timg is given by J,
=J(0,at,)=Jy. In addition toJ,(s) (s being defined as

B (7, =qat,), additional two universal functions evaluated at
J(Hetr, w)=(2m) fo I*dd~ const, (13 H,=0 are important in studying the evolution of the sys-
tem beyond the trapping poirisee below. The first is the

wherel* =1* (Hqss,0,D) is the solution of(11) for I. We value ofl* averaged over an oscillation, i.e.,
illustrate the invariance of in Fig. 5, showing the I(®)
portrait of evolution in the system passing from the de-
trapped to trapped autoresonant state. We used the same ini-
tial conditions and parameters as in Figs. 1 and 2, dut
=0.001 and,=275. The invariance af is seen in the figure . .
as the preservation of the are@s, ; inside the parts of the where one fwerages over the pgnod of oscillatigs)
portrait shown by thick lines and corresponding to smgle_(’?‘]MHeff) of the system for fixed values dfer=0
and w=s. The second function, denoted b (s), is the

value ofl* at which the functiorG [see(11)] atH¢=0 and
06 ‘ ' ‘ ' o=s has a minimunrecall that for trapping this minimum
must lie above—-1). As defined, the three function,(s),
I7(s), and 1} (s), depend on two parameters, and a.

Nonetheless the renormalized functiods=(ey,) !
*=(ey,) H¥, and 1%, =(ey,) 1%, depend on ainglg
parametera (€y,) Y3a, via the renormalized variable

= at, . We have calculated, (s), 17 (s), and|* mr(s) numeri-
caIIy and show these functions in Fig. 6. As described ear-

lier, J (s) allows to find the trapping timé . On the other

hand, we observe in the figure thBI(s)>| (s) This
leads to the conclusion that, after the trapping, the minimum
‘ value of G (=cos®) increases towards 1, i.e., the ampli-
160 165 170 175 180 185 tude A®=cos Y(minG) of the trapped oscillations of the
PHASE MISMATCH, ® phase mismatch around=0 (mod2r) decreases. To
prove this statement, we denote @rG(Iy,)=G* and, by
FIG. 5. Action versus phase mismatch during phase trapping viglirect differentiation in the vicinity of the trapping point,
passage through resonance. The conservation of the &yéashe  ghtain dG*/dt= (3G*/9Hgs1) (dHer/dt) +dG*/4t, or, on
figure illustrates the adiabatic invarianceJsf (27) ~$1*d® dur- using (12),
ing the evolution from the detrappdédreasA; ,) to trapped(area
A;) state of the system. The arrows show the direction of the time
evolution of the system.

I:‘(s)ET‘lle*dt, (14)
0

ACTION, 1

dG* /dt=(als ) (1) (1= 17%,). (15
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This equation shows thas* increases monotonically if Equations(21) comprise a Hamiltonian system with the
— 1% is positive, as in the detrapped region between the fulHamiltonian
circle dots in Fig. &). Similarly, G* decreases monotoni-

cally when the particle is in the second detrapped region SH
[between two square in Fig.(l8]. The transition between

these two types of evolution corresponds to the case when,

for some initial®, the particle passes from one detrappedwhich describes linear oscillations @f® and sl with a
region to another and, thus, remains detrapped after passisfpwly varying frequency = (& y,1 *°R) Y2 We observe that
through resonance. In contrast, if the particle is trapf@d if 5, and dl .4 are the amplitudes of these oscillations,
ther initially, or whenG* appears first above 1), | oscil-  then the productd®) . (8)maxis an adiabatic invariant as
lates around},, and so doe&*, according to(15). At the  long asv™?|dv/dt|<1. Therefore, since froni21), v 8l max
same time, we find that, in averaging over a single oscilla=gy,[3s® .., we have @l ,:,)?*R Y46 50 8l a0l

tion, «RVA 12 Similarly, 8® RV Y12 These results

d(G*)dt=(aley,)(I%) Y% —1* )>0, (16)  Show that bothl max/l and 6@ ., decreasawith time under
mr oo adiabatic conditions and, therefore, the adiabaticity condition
i.e., indeed, the amplitude® of the system phase mismatch v~ 2|dv/dt|<1 is sufficient for sustaining the autoresonance

oscillations decreases after the trapping. Similarly, onéeyond the trapping stage. Let us discuss this condition in
shows that more detail. After some algebra, we find

1 1 .
:ER(5|)2+ Es«y2|1’3(5<b)2, (22

d(1% ) dt=(al3G")(1%,) 431 ¥ +21% ), (17) v 2|duldt| < C[T~ Y5+ 2(e y,/c,) T~ 79, (23

whereG”>0 is the second derivative @ at the minimum. ~ Where C=(9/16) /(s v2)1(sv2/c2)*% Since the right
Thus, the minimal action value increases after the trappingiand side in(23) decreases in time, sufficiently small value
When(1* ) grows and the amplitudAd of the mismatch of a guarantees satisfaction of the adiabaticity condition at
oscillations becomes sufficiently smatay Ad < /6 for all times. Finally, in order to have a slowly~varying quasi-
definitenesg the systems enters the advanced autoresonasteady state defined {{19) one must have vy,! 3> a/R or
evolution stage, which we consider in the following section. _
a(ey,RIV) 1<, (24)
I1l. ADVANCED AUTORESONANT EVOLUTION ] » ] -

- . ~ This condition brakes fot large enough sinc&1'? de-

At thlsdpomt'bwil assume that dU”ngh the phase |00k";1gcreases with time. One can get a good estimate for the brak-
process described above, one reaches a stage, Whe[R o+t by assumindi~=T(t.)>1. In this caseRiY3
®(mod 2r) < /6, i.e., one can replace c®s<1 in the sec- %?16'5/27);’2((3;)1 :ndl ?hgreférg) : [
ond equation in10), yielding a simplified system: 2 ' '

~ 2
dI/dt=—ey2I1’3sin(I>, (18) ty (16/27)(ey,)(Cal ) . (25
s o We see that,, and, consequently, the maximum amplitude of
dd/dt=(4/3)Col ">~ at— (e y2/3)1 77~ autoresonantly excited oscillator can be controlled by vary-
ing the rate of variatiomr of the driving frequency. Note also

Then, we seek solutions @iL8) in the form =1+l and that sinceTb~(4s ,C,/9a)3, our assumptioﬁ>1 is valid

®=d+ 5D, wherel and® are defined by for a small enough.
_ ~ We illustrate our predictions in Fig. 7 showing the au-
(413)c,1 3~ at— (£ y,/3)1 ~2P=0, toresonant evolutiorisolid lineg of (® + r)(mod 277) —

(199  (Fig. 7a and| (Fig. 7b for the same parameters and initial
conditions as in Fig. 2, but for longer times when the braking
of the autoresonance is achieved. The dashed lines in the

figures represend andT respectively. One can see that, as
where expected, the amplitude of the autoresonant phase oscilla-
tions decreases in time and that the autoresonance discontin-
R=a(dl/dt) " *=(4/9)c,l ~2%+(2/9)ey,] 3 (20) ues att~1300, in an excellent agreement with=1278
from (25) for this case.

a — .~
el Y3sind =0,

Note that® can be defined this way only #vy,I*>a/R.
Furthermore, botd and R are varying monotonically with IV. CONCLUSIONS

t(I grows, whileR decreasgs Now, by assuming thai | We have studied the problem of trapping into resonance

<T and|6®|< , we linearize in(18), yielding and subsequent autoresonant evolution of a nonlinear oscil-
~ lator characterized by*-type potential and driven by a
d(8l)/dt=—gy,I s, (21)  chirped frequency perturbation. We have shown that, under

certain conditions, when the driving frequency increases and
d(6d)/dt=RJl passes that of the unperturbed oscillator, the oscillator phase
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Hc¢s as in Fig. 3, which is necessary for the appearance of a
minimum of G,,(1) abovethe value of—1 at later times after
starting in the detrapped state, where this minimum does not
exist. Since this is the only scenario for adiabatic transition

to the trapped state in our system independently of initial
phase, the adiabatic passage through resonance does not lead
to automatic phase locking of an adiabatically driven particle

in a square potential well. Returning to arbitrary, but finite

O N

-4

300, values ofn, as in then=2 case, after the trapping, the sys-
o tem enters the autoresonant evolution stage. Autoresonance
200 continues as long as one satisfies the adiabaticity condition
8 . [compare ta 23) for then=2 casé

10
U
z L

: 1 |dv 1 ney,/(n—1)
05 500 1000 1500 —lar ~Cn|7 - ’ (27)
v at |(n73/2)rn Cn|(3n75/2)rn

TIME, t
where C,=(a/2)(n+1)2n(n—1)c,] ¥ey,) Y% In
FIG. 7. Evolution of the phase mismatckp ¢ 7)(mod2m)  addition to(27) one must also satisfy the condition similar to
- [(@)] an~d the Elctiori [(b)] in the advanced autoresonance stage.(24)
The curvesbd andl represent the quasi-steady-state associated with
the autoresonance. The phase locking discontinues gt[see Eq. a/(syanTfn)< 1, (28)
(25)] as the quasi-steady state ceases to exist.
where R,=[2n(n—1)/(n+1)?]c, 1% *+nr2gy,l "1,
locks to the drive, and, at later times, the oscillator frequencyrhis condition guarantees the existence of a slow quasi-
follows (in average that of the driving oscillation. This steady state in the system during the advanced autoresonance
means that a continuing excitation of the system to highestage. As in then=2 case(28) is not satisfied for all times,
energies takes place, until times scaling tgs a 2 [see  putis broken afcompare t0(25)]
(24)] for linearly chirped driving frequencyq( being the
frequency chirp rate This time limit can be removed if one
gradually reduces the chirp rate as the oscillation amplitude th=
increases in autoresonance. Generalizatiorxdd (n>2)
case can be performed along the same lines as described figuation(29) shows that, in the limit of large, for « fixed
Secs. Il and Ill. For example, in studying the trapping stageand small enough, the autoresonance lasts for longer times
in the general case, one deals with the characteristic functiofyr larger values of.
[compare ta(11) for then=2 casé In addition to these applications, we plan to extend our
theory to the problem of sub- and higher harmonic autoreso-

n

n+1
eyp(n—1)

2n(n—1)ce v,
a(n+1)?

. (29

G(1)= -1 ¢ I%— I%— Hets (26) nance, as well as to higher dimensional dynamical systems
n(D=(e7n nt 2 T @in N of a similar type. Another interesting direction for future
n

studies is the autoresonance in driven nonlinear wave sys-
tems which can be associated with the dynamical problem in
x?"-type potentials. One such example is the driven nonlin-

ear Schrodinger equation with higher order nonlinedrti]

which for different values of . has the form similar to that
shown in Fig. 3 in then=2 case. We again conclude that for

all n<+«, the trapping takes place when the slowly de—i¢t+wxx+|w|2n¢:f. The time independent limit of this

creasingHq¢; (in the general case we also hadél.¢¢/dt . .
— — al) becomes negative, provided that the minimal Valueequatlon for realy corresponds to the dynamical problem

of G,(1) is above—1 when it occurs first in the evolution considered in this work.

process. This guarantees phase trapping in the system inde- ACKNOWLEDGMENT
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